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ABSTRACT

The problem considered is that of constructing the

decomposition of a vector in a Hilbert space into two orthogonal

components; one (the "projection") in a given cone, and the

other in the polar cone. The projection Z can be expressed

as a Fourier-type expansion. An algorithm for constructing
*

this expansion is given, and shown to converge to Z

Key Words: Conic decomposition, Optimization in Hilbert space,

Projection on convex cone, Convex cone, Fourier series.
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1. Introduction

A classical result in Hilbert space theory states that each

element b, of a Hilbert space H, has a unique orthogonal

decomposition with respect to a closed subspace McH, i.e.,

there exists a unique pair (z , y) such that

* *

b =z + y

(1.i) z e MZ M*

y C

Moreover (e.g. Dunford and Schwartz [31) the component y is the

solution of the quadratic extremal problem

(1.2) Ily*I12 = m II b-z 112
zEM

The so-called projection z of b onto M, can be expanded

as a Fourier sum

! * o

* (1.3) z = ak ek

where {ek} is an orthonormal basis of M, and ak is the Fourier
!k

coefficient ak = (b,). When M is given as

(1.4) M = span (ak: k=l, 2,...)

with akU not necessarily being orthogonal, the ek 's in (1.3) are

computed as

k(1.5) ek = £ i

i=l

. . . . .. . . . .. . .... nlnn -ll . .. . . . . . . . .. . . . . . " - ' .. . " . .
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where the coefficients i are determined by the Gram-Schmidt

procedure.

Consider now the case where M is replaced by a closed

convex cone C. Here a pair (z*, y is a conic decomposition

with respect to C, if

b =z + y

(1.6) z c
Y*cC*

* *
(z ,y ) = 0

* *

where C is the polar cone of C: C = {ycH: (y,z)< 0, VzcC}.

Existence and uniqueness of such decomposition is shown by

Moreau [81. A representation of y similar to (1.2) is

(1.7) lIy*112 = min Ilb-z 2

z cC

Problem (1.7) is the classical minimum distance problem of

optimization and approximation theory.

The fundamental role played in modern optimization theory by the

subspace and cone decompositions, and their relations to the minimum

distance problem, are well advocated in the books by Luenberger (5],

Dorny [2] and Holmes [4], among others. In a finite dimensional

space (1.7) is a quadratic programming problem, and the projection
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y* can be computed by appropriate quadratic programming algorithms.

The Cone Decomposition Theorem (existence and uniqueness) itself

is a convenient analytical tool to treat topics such as: Theorems

of the Alternatives, Duality in Linear Programming and more.

An interesting application of conic decomposition is discussed

by Mackie [61, following the approach of Moreau. It illustrates

nicely the use of modern concepts in optimization theory to the

solution of a problem in particle and continuum mechanics. We

outline the problem below and discuss it in more details in Section 6.

E~xample _1. 1

A number of perfectly smooth, inelastic, identical,

spherical ball-bearings fits exactly in the interior of a curved

tube, whose radius of curvature is large compared with the

radius of a ball, and are supported so that they are at rest

in contact with one another with gravity acting vertically

downwards. At time t=O this support is removed and the balls

begin to fall. The problem is to find the initial acceleration

of each hall, and in particular to determine which balls

initially remain in contact, and which tend to separate from

each other.

For further applications see e.g. Moreau 18j, Abeasis

et al. [1) and Miersemann [71.
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When C is a closed convex set, the solution of the

minimum distance problem (1.7) is attained uniquely. Thus the

mapping Pc (b) which associates with an element bEH, its closest

point in C, is a well defined function. Properties of these projection

mappings were thoroughly investigated by Zarantonello (10], from

the geometric and algebric points of view. In particular it is

shown, that the algebra of projections on convex cones retains, from

the algebra of linear orthogonal projections, enough similar

properties so as to develop a spectral theory, in the spirit of the

spectral theory of linear selfadjoint operators.

The purpose of this paper is to furnish a Fourier type

representation of the projection Z in (1.7), similar to (1.3),

~(1.5), i.e.,

z = c k dk
k=l

!(1.8)

d dk E 1i i aiI; iI~

IIk

Here

0(1.9) C =cone (a.: i =1, 2....)

is the closure of the set of all non-negative finite linear
combinations of the ai's. The index set Ik and the coefficient

It14.
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are determined by the CD Algorithm given in section 2.

The expression (1.8) is a generalization of (1.3), (1.5).

Indeed, we show in section 5 that if the system (a.) is ortho-

normal, then the non-zero terms in the expansion E ck dk
k=l

are the same as those in £ ak ak.
k=l

A representation of the projection z in terms of the

original spanning set {ak):

(1.10) Z = a uk ak
k=l

is not guaranteed to converge even if C is a subspace. This

is shown by the following (another example is given by Stakgold

(9, p. 290])

Example 1.2

In L2 ' the Hilbert space of sequences {ai}i=1 such that
W iEIcl 12<_, consider the sequence of vectors a defined component-

' i=l i

wise by

i

10 otherwise.

Let b = (0, 1, 0, 0,...), and M = span (a'. Then z*= bcM, but

it is easily verified that there exists no representation of

b in the form (1.10).

Since the original spanning set (a i ) is not adequate for

such a representation, another set must be used. In the subspace
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case this is the set of orthonormal vectors (1.5), while in the

conic case it is the set of dk 's in (1.8), which generally are

not even linearly independent.

In spite of the above dissimilarity between the orthogonal

and conic expansions, the latter still retains important properties

(e.g. Bessel inequality) of the classical Fourier expansion.

These properties are obtained in sections 3 and 4.

2. The Conic Decomposition Algorithm

In this section we define an algorithm (abbreviated CD

Algorithm) for the construction of the expansion (1.8). We

assume with no loss of generality that the spanning vectors are

normalized: I1ailJ = 1, i = 1, 2,...

Let N denote the positive integers, and define *:N-N as

the function which associates with ncN the index of .the first

non-zero digit in the binary expansion of n, e.g., *(2) = 2,

*(3) = 1.

The CD Algorithm: At the k- th iteration, k = 1, 2,...
k

one is given vectors zkIyk in H, and scalars {xi , where

initially, (k=l)

= 0

(2.1) Y= b

x i = 0 VieN.
1

Then one computes vectors dk, zk+1• Yk+l• and scalars ck' xk+l

as follows

'

'*
.' 4 . ... .. . . " "
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for k odd

(2.2) dk = a(k+)

(2.3) dk = max { d

-X k+l

2

xk+ l  k k+1

(2.4) j C

xk+l x k  c k+lI i k Y) - -

(2.5) zk+l = b -z k + l d

for k even

rzk

(2.6) dk = k 3 0

0 Zk 0
k 0

(2.7) C k =y ,~ d k)

x k+ l = X k ifz

i+ x 1Vi if zk = 0

% z~ Zkl =z k +ck dk
(2.9)

12b91

-.[. .
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The first few steps of the CD Algorithm are:

1 1
Z1  fi 0 , Y X! =  0 Vi.

Assuming (b, al)>O, we have for k = 1:

d1 = a 1

X= C 1  (b, a? 0 vil

z2 =c 1 a = (b, a1 ) A, Y 2 = b - (b, al)al,

and for k = 2

d 2 = 2 a

2

c2 (Y2 0 d2) = (b-(b, aI)a I , a 1 ) = (b, a,) - (b, a1) = 0

I z = Z2 Y3 Y2

b

2.1 Remarks

(a) The number of non-zero elements in the sequence {x }

exceeds that of the sequence (xi)00 1 by at most one.

(b) In Lemma 3.1 we prove that Zk iE X ai' where by
k=i=l k

remark (a) the sum on the right hand side is finite. Hence x .

can be interpreted as the "accumulated coefficient" of a. in zi k"

-l " .. . . -. .
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(c) If the spanning set {ai) is finite, with say n elements,

the function O(k) should be redefined as:

*(k) = k l<k<n

*(n+k) = 4(k) k = 1, 2,...

With this modification the Algorithm will maintain the properties

of the CD Algorithm, which are proved in the next sections.

3. Properties of the CD AZgorithm

Some properties of the sequences generated by the CD

Algorithm are given in the next four lemmas, and will be used

eventually to prove its convergence.

Lemma 3.1
-k

(3.1) X.i > 0 Vi ,1 -

(3.2) k= E xl ai ,

For k = 2, 3,...

' 112 < 12  c2

2 k- 2
(3.4) IYkll' < Ilbl - E C.

i=l

Proof

Inequality (3.4) is a direct consequence of (3.3) and y=b.

The other assertions are proved simultaneously by induction.

r,

.I
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Step' 1: k I The relations (3.1) and (3.2) hold by (2.1).

The proof of (3.3) for k - 1 is a special case of step 2.

Assuming the validity of (3.1) - (3.3) for k, we prove

their validity for k + 1, dealing separately with odd and even k.

Step 2: Odd k To prove (3.1.) note that for i # *( T-)" Xi

) 0 by induction, while for i = kl +l = k 0b
1- *-~) 1 X1 k

(2.3). For (3.2) we have

Z k+1 =zk + ck d k by (2.5)

k
i x 1 a1 k dk by induction

kE . a. + 3 k+la kl + by (2.2)1 +I +(4 ( cka (+-)

i# (k+l) 2) 2

k. k l

'Clai + ( k+1) a+ by (2.4

S(k+l)2

= k~l a.

i1 1 12

obtained as follows:
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I Ilyklll2 1 I yk - c k 112 by (2.5)

= I Ykl 12 + c 2  2C (Yk,dk), since I Idk IIa k+l 1 .

By (2.3),

(Yk' dk) = Ck
(3.5) or

(Yk'dk)< Ck = < x# lg0.

In both cases

-2

-2 ck (Ykdk)< 2 ck, hence

2 2 + C22_ 2d 2= i1 11 l 2  2

IlYk+L1 _I < Ilkll2 +c 2  k k  - k ,

completing the proof in step 2.

Step 2: even k If zk = 0, xk+l>0O Vi by (2.8). Let

Z k 3 0 and define f:R R by f() =I Yk - c dkII 2 . This is a

convex quadratic function which attains its minimum at ck=(Yk,dk).

Now (3.4) implies

(3.6) 1 lykll2 < Ilbl 12

Since f(O) = Ilyk112, and

%"1 f(-IlIkll) Ilyk - (-Ilzkll) Zk 112= IlYk+zkll 2= 11bl1 2,

2k
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the inequality (3.6) is equivalent to f(0) < f (-jIZkl ).

This implies

f(-llzkl) < f(c), Vc < -I IzkII

therefore ck> or 1+ k > 0
IlZkll -

k k Ck

and so xk+l =x ( + ) >0.
1 IZ I Z I I

By the above and (2.8)

Z =z +cdk +
k+l k d k Zk +  k

l~ I'l

JJzkJJ i=l 1

ck CO~ la
= X (1+ )x ai  = 1 x.i1 ll'kll 11 i=l 1

which proves (3.2).

Finally, since (3.5) still holds for k even, the proof of

(3.3) for k odd contains also the proof for k even. This completes

the proof of the lemma. 0

Lemma 3.2

(3.7) E ci < l bl12  (Bessel inequality).i=l

(3.8) lim Ci = 0,

(3.9) the sequence lyk
1i is monotonically decreasing,

I - n l I . . . I- I
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(3.10) zkcC YkcN.

Proof

k 2 2 2
By (3.4) E c. < lbl for all k. Hence the series E C. is

i=l - i=1 I
convergent, Bessel inequality (3.7) holds, and the general term

C i of the series tends to zero, i.e. (3.8) holds. The validity

of (3.9) is an immediate consequence of (3.3), while (3.10)

follows from (3.1) and (3.2). Note again that by Remark 2.1 the

series in (3.2) is finite. 0

The next result states roughly, that for k large enough, Yk

is "almost" in the polar cone C*.

Lemma 3.3

For e>0 and zcC fixed, there exists K such that

(3.11) (Yk' z) _c Vk>K.

Proof

We first prove (3.11) for the case where z=ai for some i.

By (2.2) ai appears periodically in {dk}. Denote by w the period

of ai in {dk} (w may depend on i). By (3.8) we have

c -k>Ki

ck .WT V

for some Ki. We proceed to prove that (3.11) holds with K=Ki.

Indeed, fix k>Ki, and let

II

'1
.. .'



.14

(such L. exists by periodicity of a1 in (dk1) By (2.3) and (2.7)

we have

C i> Cy., d.) Vj

and by (2.5), (2.9)

k-i
Yk Y k - 1 - k1d kl Yk-I r c Cd.= k- E jC jd.ij=k-ti Yk C jJ

where J {jcN: k-I <j< k-1, d.' 0).

Hence

(Yk' ai) = (yk' d k-d (k E Pi di, d k-I
E~

= yk-L , d kI- E c i (di, d k-t <

jEJ1

.10 1-1VIcI(di d )IjcJ -I + k-I

< +V cjI -11 djjIhjdk Ij by cauchy-Schwartz inequalityk k- t -9

j=CkI. + E Jc.1 since j~djII 1 VjJJ1 ,
jCj1
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C C-w+-T + wT -- W w+--w =+ €

Now let z be any element of C. Since C = span (a.), the

neighborhood of z

N(Z; 21iii)= (u: Ilu-zl TI- T

contains an element v which can be expressed as a finite sum

(3.12) v = 7 x. a , xj > 0 VjcJ 2

where J2 is a finite index set of cardinality, say, m.

Define,

(3.13) 8 - T

2m max ixj"
JEJ 2

By the first part of the lemma, there exists K. such thattJ

(3.14) (Yk' aj) < 8 Vk > K.

Let K = max K.. By (3.12) - (3.13) we have (Y ,v)< , thereforej * k
e 2

(Yk' z) = (ykI v) + (Yk' z-v)

S+ IlykIl IIz-VII
;" -- 2
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- JIlbil -c , by (3.6) and vcN(Z; )
7 1 -1 1

This completes the proof. 0

The next lemma shows that the subsequences (Yk} {zk},

k = 2, 4, 6,..."tend to orthogonality".

Lemma 3.4

The subsequence {(Ykzk); k even) satisfies

(3.15) lrm lYk, zV ) 0.

Proof

By (2.9) and (3.6)

IIzkII = IIb-YkII < IlbIl + Iyk l I 211bll.

Hence for k even with Z #0 , by (2.6)

Slk' zk) =1Iki I(yk, dk)I I Izki I ICk I

_<211bll 19,1.

The latter upper bound converges to zero, by (3.8), hence (3.15)

follows. 0
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4. Convergence of the CD A gorithm

We now combine the results of the previous section to prove

our main result:

4.1 Convergence Theorem. The sequences {Yk}, (zk } generated

by the CD Algorithm converge to the unique components y*,z;* of

the conic decomposition (1.6) respectively.

Proof

Using the properties (1.6) of the solution y*,z* one obtains

Ilyk-y*I12 = (yk - y*, Yk-y*) = (yk-y', (b-zk) - (b-z*))

= (yk-y* Z*-Zk) =(Ykz*) - (Yk' Zk) - (y*, z*) + (y*, zk)

<(Yk' z*) - (Yk' zk), by orthogonality of y* and z*, and the

facts Y*EC*, ZkcC. By Lemmas 3.3 and 3.4, this implies that

for every c>0 there exists a large enough K such that I lyk-y*I 12<E
for all k>K, k even. This proves convergence of the subsequence

{yk1 , k even.

By (3.9) the sequence "IykIIk=i is monotone. Since it has

a convergent subsequence, the entire sequence I yklI must

converge to I y*ll, i.e.,

(4.1) lim Ilykll IIy*ll

The final step of the proof is to show that the convergence

in norm (4.1) implies the convergence yk-y*. Now,

12 ...
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yk[ 12 = jib _ [2  .1,IY* + Z* - Zk 12

= 1Ily*l l2 + IIz* - Zk12 + 2 (y*, z* - Zk)

IlY*l12 + - y*11 2  - 2(y', Zk).

Therefore

IlYk-Y*ll 2 = lykl2- I 1 ll2 + 2(y*, zk)

_ IlYl 12 - I1 112 since y*cC*, Z.kCC.

The latter inequality together with (4.1) imply

2
IlYk -Y*I 1 0, or Yk y*"

Since zk = b - Yk' 2 k * b - Y* = Z*, and the proof is

completed. 0

4.2 Remarks

(a) The choice of the initial projection t. = 0 in the

CD Algorithm is merely for convenience. In fact .1 can be

chosen to be any element of C without affecting the validity

of the preceding results. In this sense Theorem 4.1 is a

*: global convergence result.

(b) In the CD Algorithm, ai appears periodically in the

sequence (dk)k= ,, with period 21+1. This choice is by no means

unique in order to guarantee convergence. Any choice for which
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the distance between consecutive occurences of ai in (d k  is

bounded will do.

5. The Subapace Case

In this section we discuss the case where C is a subspace

spanned by (a1 , a2 ,..0.. The CD Algorithm can be simplified

in this case and the resulting expansion has greater resemblance

to the classical Fourier expansion.

The non-orthogonaZ case. Let C = span {al, a2 ...} where
the ai's are arbitrary elements in 2 in particular they may be

non-orthogonal, or even linearly dependent.) Here the series

{x.} in the CD Algorithm can be dispensed with, and (2.3) is

replaced by

(2.3aJ Ck = (Yk' dk).

A careful examination of the results of sections 2-4 reveals

that they remain valid, with the following strengthening of the

results (3.4), (3.11) respectively:

2 2 k 23 Yk

(5.1) II~k+l'2 =11b1 2 -2 Vk,

,

i~t
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Moreover, a necessary and sufficient condition for equality to

hold in the Bessel inequality (3.7) can be added:

t = lb1il (Parseval's formula)

(5.3) i=l 1

if and only if bEC.

Indeed by (5.1), E c2 = ''b'' 2 - Jy*1 2 . Hence (5.3) holds

i=l
if and only if Y* = 0 or equivalently bcC.

The Orthogonal Case. Let C be the subspace spanned by the
orthonormal basis (ai}. We show that in this case the expansion

generated by the CD Algorithm (with the modification (2.3a) is

a generalization of the classical Fourier expansion, in the

sense that the non-zero elements of the former coincide with

the elements of the latter. More precisely,

Proposition 5.2. Let {ci) and {di) be the sequences generated

by the CD Algorithm for the projection Z* = E ci di, and let
i=l

= (b, ai) be the Fourier coefficient in the representation

Z, E ai Then
SiI.

k kak i k
(5.4) c -= =

0 otherwise o
0 otherwise

Proof. Let

z= 0, Zk+l = E a a i  y b - k = 1, 2,
Ii-l Ykk
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and Ck = span {ai)~i= I . We prove (5.4) by induction on i. For

i = 1 we have c= a = (b, a1 ) and di = a, by (2.2). Assume

that (5.4) holds for i = 1,...,n-l. From this and z1 = z= 0

it follows that

2-1 k
Z k c I d t= a. a. k~Z2k = j-1 ' Z

since c. 9 0 only if £ is of the form £ 23-1, and for such j
k-

dX =aj and c= aj by (5.4). Hence if i=2 , z i = Z1+10g2i ,

and by (5.4) for all i

(5.5) z =Z
1 l+(log 2il

Where [rJ denotes the integer part of r. The induction hypothesis

now shows that (5.5) holds for i = l,...n, since z is then

(n-l)-th partial sum of the series Z ci di . Further, since the

Fourier expansion satisfies Yk+lCC , one obtains

I
(5.6) = b - Z= b - + Yl+[log2iJ £ C~logi]

for i = l,...,n. If 2 < n <2k-1, then log2n k-

and by (5.6) y n Ck " By (2.2), (2.6), the first appearance ofk-i

C1 in the sequence (d.} is for i = 2 k_ , thereforedncCkl, and

cn = (Yn' dn) = 0. If n = 2k 1 , then [log 2 (n-1)] = k-i, Yn-1"

yk by (5.6), and dn ak by (2.2), implying c n (yn' dn) =
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k-i
(Y - n-I dnl ak) = (Yk' ak) (b -iF , ai, ak)

(b, ak) a k by orthogonality of (ai). 0

6. An Example

We return to the problem in Example 1.1. The mathematical

model of the problem is (see [6]):

(6.1) x. = b. + A. - i ,1 1 i-I 2

(6.2) xi+1 - x i  0

(6.3) A i (xi+1 - x i ) = 0 i =,...,n-1

(6.4) X= n =-0, XZ 0

where A. is the instantaneous reaction between the i-th and1

(i + 1)-st ball, and X is the initial acceleration of the

i-th ball multiplied by its mass at t=O. The quantities bi

are given in terms of the geometry of the tube.

Defining Ui = X - Xi, it is shown by Mackie that the

problem is equivalent to finding vectors x, u such that

(6.5) b=x+u, (, P)=0, xeK, ucK*

where K is the set of vectors satisfying (6.2), i.e.

(5.6) K=[x: X A >0})

and the matrix A is given componentwise by

... . . . . ... . .. . I r,, , , - ... .. . -. -. . . .= . . .. . .



23

1 j=i

(6.7) a. I j=i+l

0 otherwise.

It is well known that the polar of a cone given in the
n i

form (6.6) is K* = cone Jai)i=1, a = i-th column of A. Since

K**=K, problem (6.5) can be now reformulated in the format

needed for our purposes, namely: find z, YcRn+l such that

b = z+y, (z, y) = 0, zcCn, ycC n

where C n = cone (ai n= 1 and C* -n+l y.> 0 i1,....n).

As a specific example consider the decomposition of

b = (-1, .1, 0,...,0)cRn+l. Using the CD Algorithm for n=4, we

obtained a sequence converging to z* = (0, ,-,- ,),

Y* = (-l, 1[, 1[, 1,), which suggested that the solution for

general n is given by

n-i 1 1 1 11 1(6.8) n (0 n - - -n) j Y nn-) ny"

This is indeed the solution: the relations 7*cC* and -y*, z )=0
n n n n

are easily verified, while the condition z*ECn follows by notingi!n n
n k-i

the explicit representation Z* = £ (I- )ak.n k=2

Turning to the case where the number of balls is infinite,

we now deal with a problem in the Hilbert space £ Using the

natural imbedding of Rn + l in i2, i.e., XER
n + l corresponds to!1.
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(x . x + ,O,O,. .. ) the coli C is DOW gjiv'll ;.; ile

conic hull of al C 2 given by (6.7). A look at (6.8) suggests

that

(6.9) z* = (o, 1, 0, 0,...) , Y* = (-1, 0, 0,...)

is the solution in this case. Indeed, the relations y*cC*,

(z*, y*) = 0 can be verified by a direct computation. Finally,

z* = lim z* cC since Z* cC and C is closed.n-* n n

Observe that though z*EC, it cannot be expanded directly as

a non-negative linear combination (finite or infinite) of the

ia 's.

i

'I.
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